High-stake exams change teacher grading standards: evidence from a policy reform *

Pedro Freitas ${ }^{\dagger 1}$
${ }^{1}$ Nova School of Business and Economics, Universidade Nova de Lisboa

7th April 2021

Abstract

The introduction of high-stake standardized exams has been shown to be strongly associated with improvements in an average performance in international standardized assessments [Bergbauer et al., 2018] as well as with proficiency in mathematics and reading [Jacob and Lefgren, 2004]. Despite legitimate concerns with the incentives to teach to the exam and the limited set of skills under evaluation, the fact that idiosyncratic grading biases tend to vanish through the application of blind, anonymous evaluation mechanisms have ensured their validity and continuity in multiple education systems (OECD, 2013). By means of a difference-in-difference approach, we exploit a policy reform that introduced high-stakes exams at the end of the 6 th grade in Portuguese and Mathematics, in Portugal, for a short period of 4 years. We study how the introduction of these high-stake exams changed teacher grading standards and teacher scores distribution. We find that teachers in courses covered by external high-stakes exams tend to give a significantly higher percentage of failing scores and a significantly lower percentage of higher scores, an effect which shows to be stronger for Mathematics and not homogeneous for male and female students.

JEL classification: I20;I28;H52

Keywords: Student assessment, Teacher scores, Student achievement, School accountability

[^0]
1 Introduction

Students' scores aim to mirror student proficiency at a given moment in time. Scores can be the outcome of different types of assessments, namely the ones graded by teachers and others based on national standardized tests. The understanding of how different types of assessment impact students' performance is a pivotal policy question, since scores are commonly used as a signal and selection criteria for school and university admissions, determining future labour market outcomes.
Among the 36 countries part of the OECD, and according to the data provided by the PISA 2015, 30 conduct external examinations at the upper secondary level and 14 at the lower secondary level. The existence of external examinations remains a controversial topic in education policy given its potential for disruptive effects on teaching practises, such as the disproportionate focus on teaching testing techniques [Koretz, 2019]. Other studies have been exploiting the differences across various educational systems, measuring how the existence of external examinations impacts student performance in standardized international tests. [Bergbauer et al., 2018] uses data from PISA between 2000 and 2015, gathering results on 59 countries, concluding that higher student outcomes are strongly associated with an accountability system that includes standardized exit tests. This result shows to be particularly strong in countries where the schooling system performs poorly. In a review of the existing literature [Figlio and Loeb, 2011] concludes on the positive impacts on academic outcomes of the massification of the external evaluation mechanisms in the 90's and 00's in US. [Jacob and Lefgren, 2004] addresses one of these cases, showing improvements in reading and mathematics for the third and eight grade students in Chicago. External exams can also bring higher transparency to the educational system, providing additional information on school and student performance. [Nunes et al., 2015] shows that the publication of school rankings based on the results of high stake exams decreases the number of students enrolled in schools with poor performance, increasing their probability of closure and [Burgess et al., 2013], for Wales, finds negative effects on school effectiveness after the abolishment of public school table performance. All these studies go in line with the view that a thorough accountability system aligns the incentives for a higher effort by the students and teachers, improving the schooling results.
These external examinations may differ in how they weight in the student's final assessment, taking the form of low or high stake exams. Under the low-stake case they do not factor in students' outcomes, which may induce lower effort by the students, biasing the performance results [Wise and DeMars, 2010] and [Zamarro et al., 2018]. These externals exams may also be heterogeneous in terms of the link between the student and the
grader, as in [Diamond and Persson, 2016], which shows that under a non-blind system, teachers may inflate the scores of the students who they believe had a "bad test day". Whatever the form they take, external examinations are a single measure of the latent dimension that is the student ability, capturing it in a noisy imprecise way. [Sekhri, 2020] finds that admission to high-ranked colleges determined by the result in a centralized exam has little impact on the proficiency during higher education. In the same line, [Cerdeira et al., 2018] shows that the best predictor for the proficiency during higher education are the scores granted by the teachers during the upper secondary education rather than the results in the exit national exams.
Nonetheless the scores assigned by teachers are also not free from possible distortions and biases. One of the most studied of these biases is the gender differences in the distribution of the teacher scores. [Lavy, 2008], using data for Israel students in the upper secondary education, shows that male students are negatively discriminated in teacher scores compared with results in external evaluations. [Lavy and Sand, 2018] finds a similar gender bias in primary education showing that this differential in teacher scores have long lasting impacts during the students' school life. Similar results are found for the US by [Cornwell et al., 2013], which points that this bias emerges from the difference on non-cognitive skills between boys and girls. Other possible bias between teacher and external scores relates with race and ethnicity. [Burgess and Greaves, 2013], using data for England, shows a negative bias towards black students and [Botelho et al., 2015] finds a similar pattern for Brazilian schools. These distortions may have significant impact since teacher scores constitute a relevant source of information, both for students and families. [Azmat and Iriberri, 2016] provides evidence that students react to feedback about their place in the performance distribution and [Bobba and Frisancho, 2016] concludes that the students lack complete information about their ability and when this information is provided they update their career choices with long lasting impacts.
In many education systems final student's assessment depends on the scores granted both by teacher and on external scores. Albeit few studies focus on how the distribution of teacher scores is affected by the information provided by external exams. An exemption is the work by [Calsamiglia and Loviglio, 2019] which measures how much teachers grade their students relatively to their class peers exam results.
In this work, we study how the teacher score distribution changed after the introduction of high-stake exams in Portuguese and Mathematics at the end of the 6th grade in Portugal. Between 2012 and 2015 the previous 6th grade low stakes exams were converted into high stake ones, which mounted to 30% of the student's final score. Additionally, the average school results in these exams, together with the school average teacher scores were published in several media outlets, triggering a public debate about school rank-
ings and efficiency ${ }^{1}$. Exploiting a difference-and-difference approach we estimate how the introduction of this policy impacted the teacher score distribution in the courses covered by national exams, Portuguese and Mathematics, compared with other courses not covered by external assessment mechanisms - English, History and Sciences.
In section 2 we detail the institutional setting behind the the introduction of high stakes exams in the Portuguese educational system, in section 3 we elaborate on the data used, in section 4 we present the estimation methodology, in section 5 we present the results and section 6 concludes.

2 Institutional Setting

The Portuguese educational system is organized in 4 cycles, from the primary to the upper secondary education. The first 4 years correspond to the first cycle, the 5th and the 6 th grade to the second cycle, the 7th, 8th and 9 th grade make up the 3 rd cycle and the 10th, 11th and 12th comprehend the upper secondary level. Historically, in Portugal, there were not any kind of external evaluations until the 12th grade, when the national exams are used as a criteria to access higher education. In 2000 the first low stake exams are introduced in the 4th grade in Portuguese and Mathematics, which were anonymous and did not impact the final score. The first low stakes covered just a sample of the whole population. This same type of test is extended to the 6th grade in 2002 and in 2005 high stake exams were instated in the 9th grade, mounting for 30% of the final score. The other 70% of the final score was dependent on the score granted by the teacher. The high stake nature of the exams was extended to the 6th and 4th grade exams between in. This decision was then reversed and currently in both the 4th grade and 6th grade there isn't any kind of external evaluation.
In Portugal, scores, both of external examinations and of teacher scores are reported in a scale from to 1 to 5 , being 1 and 2 failing scores, 3 a passing score, 4 a good score and 5 a very good score ${ }^{2}$. Between 2012 and 2015, during which high stake external exams were in place, we observe, both in Portuguese and Mathematics, a significant change in the distribution of teacher scores. The share of failing scores (1 or 2) increased significantly and the share of students achieving the highest scores fell, as can be observed in Table 1^{3}.

[^1]Table 1: Distribution of teacher scores (\%)

	Portuguese		
	$\mathbf{0 8 / 0 9 - 1 0 / \mathbf { 1 1 }}$ (Low Stake exams)	$\mathbf{1 1 / 1 2 - 1 4 / \mathbf { 1 5 }}$ (High Stake exams)	$\mathbf{1 5 / 1 6 - 1 7 / \mathbf { 1 8 }}$ (No exams)
Non Passing Score (<3)	$12,02 \%$	$14,91 \%$	$8,13 \%$
Passing Score $(=3)$	$52,83 \%$	$53,16 \%$	$53,5 \%$
Good Score $(=4)$	$25,01 \%$	$24,69 \%$	$29,25 \%$
Very Good Score $(=5)$	$10,12 \%$	$7,22 \%$	$9,11 \%$
	Mathematics		
	$\mathbf{0 8 / 0 9 - 1 0 / \mathbf { 1 1 }}$	$\mathbf{1 1 / 1 2 - 1 4 / \mathbf { 1 5 }}$	$\mathbf{1 5 / 1 6 - 1 7 / \mathbf { 1 8 }}$
(Low Stake exams)	(High Stake exams)	(No exams)	
Non Passing Score (<3)	$20,87 \%$	$28,61 \%$	$20,35 \%$
Passing Score $(=3)$	$44,73 \%$	$40,81 \%$	$41,52 \%$
Good Score $(=4)$	$22,11 \%$	$21,22 \%$	$25,3 \%$
Very Good Score $(=5)$	$12,28 \%$	$9,37 \%$	$12,83 \%$

This change is particularly relevant in the share of students performing below the passing score, which increase by 3 p.p and 8 p.p higher in Portuguese and Mathematics respectively. Contrary, the share of very good scores shows a relevant fall of 3 p.p both in Portuguese and Mathematics during the time the high-stake exams were in place. We also observe that after the high stakes are suspended the distribution of the share of students in each score converged to the levels before the introduction of high-stake exams.

3 Data

We use the merge of two distinct large administrative databases. The first comprises administrative data on Portuguese students compiled by the Portuguese Ministry of Education (MISI) with information on their family, school, class, teacher as well as on the scores attributed by the teachers to the students in the different courses. These data is merged with the data on the performance of these same students in external tests of the 4 th grade. The total universe comprises 13.5 million observations comprising 1,143 schools, 52,789 teachers and $1,106,519$ students across the 5 th, 6 th and 7 th grade, and 5 courses - Reading, Mathematics, English, History and Sciences, as presented in Table 2. In Table 3 we present the descriptive statistics of the variables used at the student level.

Table 2: Number of students by grade and course

	5th	6th	7th
Portuguese	875.461	898.172	904.069
Mathematics	892.816	913697	914.920
English	842.184	860.258	870.049
History	889.683	909.916	908.508
Sciences	882.246	904.569	909.578

4 Methodology

Our identification strategy relies on comparing teacher scores distributions in courses and years covered by external national exams - Portuguese and Mathematics between 2011 and 2015 - with the teacher scores distribution in other three courses not covered by final high-stake exams - History, English and Sciences, following the specification:

$$
\begin{align*}
Y_{i, s, g, c, p, t}= & \text { Examyear } \beta_{1}+\text { Examcourse } \beta_{2}+\text { Examcourse.Examyear } \beta_{3}+X_{i, t} \beta_{4}+ \tag{1}\\
& Y_{i}^{E x, 4} \beta_{5}+Z_{s, t} \beta_{6}+\nu_{g}+\mu_{c}+\phi_{s}+\gamma_{p}+\eta_{t}+\epsilon_{i, s, g, c, p, t}
\end{align*}
$$

We observe each student, i, in school s, in grade g, in course c, with teacher p at time t. The specification above is taken as a linear probability model, given that $Y_{i, c, s, p, t}$ stands for the outcome of interest, measured as an indicator if the student obtained a certain teacher score. $X_{i, t}$ is a set of controls at the individual level, including age, gender, mother and father's schooling, mother and father's birth place, mother and father's working status, access to school means tested programs ${ }^{4}$, possession of computer and internet access at home. $Y_{i}^{E x, 4}$ represents the student performance in the Portuguese and Mathematics external exam at the end of the 4th grade, signalling the student baseline proficiency ${ }^{5}$. Both $X_{i, t}$ and $Y_{i}^{E x, 4}$ are averaged out at the school-year level, under $Z_{s, t, 4}$, controlling for the changes in the demographic structure of the school cohorts across time. We additionally control for grade specific fixed effects, ν_{g}, course fixed effects μ_{c}, school fixed effects, ϕ_{s}, teacher fixed effects, γ_{p} and time fixed effects, $\eta_{t}{ }^{6}$.
Our variable of interest is given by β_{3}, which measures how each teacher scores in Por-

[^2]Table 3: Number of students by grade and course

Variable	Mean	S.D	Max	Min
Female	0.48	0.48	0	1
Portuguese Mother	0.93	0.27	0	1
Portuguese Father	0.93	0.28	0	1
Mother College graduated	0.15	0.36	0	1
Father College graduated	0.09	0.29	0	1
Means tested program - Level A	0.20	0.40	0	1
Means tested program - Level B	0.26	0.44	0	1
Mother unemployed	0.11	0.32	0	1
Father unemployed	0.07	0.25	0	1
Computer possession	0.65	0.48	0	1
Internet access	0.56	0.49	0	1
4th grade exam Portuguese (failing score)	0.17	0.38	0	1
4th grade exam Portuguese (passing score)	0.44	0.44	0	1
4th grade exam Portuguese (good score)	0.33	0.43	0	1
4th grade exam Portuguese (very good score)	0.06	0.49	0	1
4th grade exam Maths (failing score)	0.25	0.43	0	1
4th grade exam Maths (passing score)	0.37	0.37	0	1
4th grade exam Maths (good score)	0.28	0.28	0	1
4th grade exam Maths (very good score)	0.10	0.10	0	1
N	$13,461,562$	-	-	-

tuguese and Mathematics (Examcourse $=1$) change due to the introduction of high-stake exams between 2012-2015 (Examyear $=1$). The control groups are always composed by the scores in the courses not covered by high stake exams (Sciences, History and English) considering 4 different alternative: 1. Control Group 1 - students enrolled in the 5th grade; 2. Control Group 2 - students enrolled in the 6th grade; 3. Control Group 3 - Students enrolled in the 7th grade, Control Group 4 - All the students observed in the 5th, 6th and 7th grade. The use of three distinct school grades to define the control groups is justified by the potential spillover effects of the introduction of high stake exams in Portuguese and Mathematics on the teacher grading behaviour in other courses. This is particularly relevant in the 6th grade, since the introduction of high-stake exams in certain courses can change the teacher grading standards in other non-affected courses. We also pick the scores on these same control courses but in the 5th grade. However a possible bias may still arise since the 5th grade is, together with the 6th grade, part of the second cycle of studies in the Portuguese system and some anticipation effects on the teacher grading behaviour may occur. To avoid such possible bias we also focus on the scores in English, History and Sciences at the end of the 7th
grade, a grade without external evaluation mechanisms and whose teacher scores are not expected to be impacted by the introduction of high-stake exams at the end of the 6th grade.
To test for the validity of these different control groups, we inspect the parallel trend hypothesis plotting the shares of each score across different school years. In Figure 1, Figure 2 and Figure 3 we observe how teacher scores in the Portuguese and Mathematics in the 6th grade compare with the other courses (English, History and Sciences) in the 5 th, 6 th and 7 th grade. In all the three cases, overall, we observe no divergent trends before the introduction of high-stake exams (in $2011 / 2012$) and a sharp change between treatment and control courses during the exam years. In the case of control group 1 (6th grade scores), we note potential spillover effects due to the existence of high stake exams in Portuguese and Mathematics to other courses not covered by exams, particularly on the share of students with a very high score (level 5). In the second control group, the one which comprising the students' performance in the 5th grade in courses not covered by national external exams, some anticipation effects on teacher grading cannot be ruled out, namely in the share of the students with a non passing score (level 1 and 2). In the third control group, which compiles teacher scores in the 7th grade, we do not observe any trend in teacher scores in the control group after the introduction of high stake exams in the 6th grade.

5 Results

5.1 Baseline results

In Table 4 we observe the impacts of introducing high-stake exams in teacher scores considering Equation (1) and assuming the 4 control groups previously pointed. We find consistent positive increases on the probability of achieving a negative score (1 and 2) between 3 and 5 p.p and a small decrease on the probability of achieving a score equal to 3 up to 2 p.p. The impact on the probability of achieving a good and very good score is consistently negative, between 2 and 4 p.p on the probability of having a score of 4 and between 1 and $3 \mathrm{p} . \mathrm{p}$ on the probability of having a score of 5 . The estimated impacts of the introduction of high stake exams is larger when we take as control other courses not covered in national exams - History, Sciences and English - in the 5th grade (control group 1) than when we take as control groups these same courses in the 6 th and 7 th grade (Control group 2 and 3$)^{7}$.

[^3]Figure 1: Teacher score evolution in Portuguese and Mathematics 6th grade VS English, History and Sciences, 6th grade

The courses covered by national exams are depicted in full line while the ones without external evaluation mechanisms are presented in dashed lines. Vertical lines frame the years during which high-stake exams were in place.

We further restrict the analysis excluding the last three school years, after the abolition of the high stake exams - between 2015/2016 and 2017/2018- preserving just the school years before and during the introduction of high stake exams in 2011/2012. We observe in Table 11 similar results across the different scores, but a higher magnitude on the estimated impacts. We find an increase on the probability of obtaining a failing score between 4 and 6 p.p, and a marginal effect on the probability of achieving a passing score, close to zero. Regarding higher scores, we estimate a fall on the probability of achieving a score of between 2 and 3 p.p. A similar magnitude is found on the probability of achieving a very good score, equal to $5 .{ }^{8}$.
Since the same student is observed across several courses and school grades, within student variation of teachers scores can be explored using a student fixed approach. The results of this specification (Table 12) are in line with the results previously found, show-

[^4]Figure 2: Teacher score evolution in Portuguese and Mathematics 6th grade VS English, History and Sciences, 5th grade

The courses covered by national exams are depicted in full line while the ones without external evaluation mechanisms are presented in dashed lines.Vertical lines frame the years during which high-stake exams were in place.
ing an increase in the share of failing scores around 4 p.p. and a decrease in the share of good and very good scores (equal to 4 and 5) in 2 p.p. No impact is found on the share of passing scores (equal to 3).
To test for the validity of our difference-differences strategy we run four placebo tests assigning the treatment to the periods between: 1.2008/2009 and 2010/2011; 2. 2008/2009 and 2009/2010; 3. 2009/2010 and 2010-2011; 4. 2008/2009 and 2010/2011. All the placebos are run including all the observed periods, 2007-2018, and in the restricted version excluding the data after 2015, when the high-stake exams were suspended. In all estimations (Table 13-Table 20) the estimated coefficients are close to zero, never exceeding 1 p.p. Exception to placebo specification 1 , on the score threshold 5 , showing a positive coefficient up to $2 \mathrm{p} . \mathrm{p}$, result of the higher heterogeneity on the the share of students achieving a score of 5 among the courses in the control group 3 .

Figure 3: Teacher score evolution in Portuguese and Mathematics 6th grade VS English, History and Sciences, 7th grade

The courses covered by national exams are depicted in full line while the ones without external evaluation mechanisms are presented in dashed lines.Vertical lines frame the years during which high-stake exams were in place.

Table 4: Estimation diff-diff estimation

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} 0.053^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.042^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.028^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.039^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.0057^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.004^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.033^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} -0.020^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.0039^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.028^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.015^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} -0.027^{* * *} \\ (0.0005) \end{gathered}$
Obs.	5,591,049	3,635,492	5,745,348	7,700,937	5,591,049	3,635,492	5,745,348	7,700,937	5,591,049	3,635,492	5,745,348	7,700,937	5,591,049	3,635,492	5,745,348	7,700,937
R-squared	0.181	0.185	0.171	0.171	0.181	0.155	0.142	0.148	0.181	0.119	0.115	0.112	0.181	0.287	0.267	0.273
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 5: Estimation diff-diff estimation - Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} \hline 0.058^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} 0.049^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.043^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} 0.052^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0013) \end{gathered}$	$\begin{gathered} -0.008^{* * *} \\ (0.0012) \end{gathered}$	$\begin{aligned} & 0.002^{* *} \\ & (0.0011) \end{aligned}$	$\begin{gathered} -0.036^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.025^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.029^{* * *} \\ (0.00010) \end{gathered}$	$\begin{gathered} -0.031^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.027^{* * *} \\ (0.0006) \end{gathered}$
Obs.	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813
R-squared	0.186	0.191	0.179	0.178	0.153	0.147	0.135	0.143	0.112	0.117	0.114	0.110	0.287	0.283	0.265	0.273
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

5.2 Heterogeneity Results

To recover some of the mechanisms behind this change in teacher grading during the time that high-stake exams were in place, we measure how the reported results are heterogeneous across different dimensions, namely: Portuguese vs Mathematics, student's gender, teacher's gender and teacher overlapping across difference. To perform this analysis we build on specification in Equation (1) and consider the interaction with our dimension of interest, $W_{i, t}$:

$$
\begin{align*}
Y_{i, s, g, c, p, t}= & \text { Examyear } \beta_{1}+\text { Examcourse } \beta_{2}+\text { Examcourse.Examyear } \beta_{3}+X_{i, t} \beta_{4}+ \\
& W_{i, t} \beta_{5}+\text { Examyear. } W_{i, t} \beta_{6}+\text { Examcourse. } W_{i, t} \beta_{7}+\text { Examcourse.Examyear. } W_{i, t} \beta_{8}+ \\
& Y_{i}^{E x, 4} \beta_{9}+Z_{s, t} \beta_{10}+\nu_{g}+\mu_{c}+\phi_{s}+\gamma_{p}+\eta_{t}+\epsilon_{i, s, g, c, p, t} \tag{2}
\end{align*}
$$

Then the coefficients of interest are given by β_{3}, for the case $W_{i, t}=0$ and $\beta_{3}+\beta_{8}$ for $W_{i, t}=1$.
In Table 6 we report the results spliting the effect of the introduction of high-stake exams for Mathematics and Portuguese. Mathematics is the most affected course on the probability of having a failing score, around 3 p.p higher than in Portuguese, and on the probability of achieving a very good score $(=5)$ which is up to 1 p.p lower than in Portuguese. The results between the two courses are more aligned on the probability of achieving a passing score ($=3$) and good score ($=4$).
Regarding the heterogeneous effects in terms of gender, differences depicted in Table 7 are small, however we estimate a slightly higher probability of getting a failing score for boys and a lower probability of being award a good or a very good score for girls.
Around 30% of the teachers in our data are male, a share which is relatively homogeneous across the different courses. The impacts are very similar for male and female teachers (Table 8) showing that this is not a factor determining the observed results.
Under the Portuguese education system a given teacher may teach the same students and classes across different courses, namely the Portuguese teachers can also teach English and History and the Mathematics teachers can also be the one in Sciences. This overlap depends on the teacher qualification and schedule availability in the school. Teachers who overlap in two courses tend to know the students better, due to the larger time spent together in class, which can influence teacher grading standards. In Table 9 we observe that teachers assigned to more than one course, give a significant higher share of failing scores to their students.

6 Conclusion

The introduction of high-stake exams is one the mechanisms used to increase school accountability. The massification of external standardized evaluation methods under the No Child Left Behind Policy in the early 2000's in the US triggered a heated debate about the impacts of these accountability policies. Many argue for the disruptive effects on teaching practises due to the existence of these standardized tests, [Koretz, 2019], while others show the positive impacts they have on learning and students outcomes [Bergbauer et al., 2018]. In most of the education systems, students final assessment is a combination of the results in these standardized tests and scores assigned by teachers, whose criteria is defined by each individual teacher. However little is known about how these two types of assessment are related, namely how teachers adjust their grading standards due to the introduction of these stricter accountability methods.
We exploit a policy reform in Portugal between 2012 and 2015 which changed the nature of the standardized tests in Portuguese and Mathematics at the end of the 6th grade from low-stake to high-stake, weighting 30% in the final student assessment. The results in these high-stake tests, as well as the differences between teacher and exam scores were published yearly in media outlets, bringing a higher degree of information regarding school performance. The remaining courses in the 6th grade - History, Sciences and English - were not assessed through high-stake exams. We then compare how the teacher scores in the courses covered by high-stake exams, Portuguese and Mathematics, changed relatively to the teacher scores in those courses which were not covered by this accountability mechanism. We find that during the time that high-stake exams were in place the share of students being award with failing scores in Portuguese and Mathematics significantly increased between 3 and 6 p.p, while the share of good and very good scores decreased between 1 and 4 p.p. These results are robust across different specifications, showing that teachers become more demanding in their grading standards while high-stake exams were in place. This change was particular clear in Mathematics and gender differences are found. Boys are more affected by the increase on the probability of getting a failing score and girls by the fall on the probability of achieving good and very good scores. These results highlight how accountability mechanisms can have a broader impact, namely on teaching practises and grading standards. On-going research explores other sources of heterogeneity, namely if teacher seniority or the school-share of students under means-tested programs explain the observed results.

Table 6: Estimation diff-diff estimation - Portuguese VS Mathematics 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
Portuguese	$\begin{aligned} & \hline 0.039^{* * *} \\ & (0.0008) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.027^{* * *} \\ (0.0009) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.014^{* * *} \\ & (0.0008) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.026^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.023^{* * *} \\ (0.0012) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.006^{* * *} \\ & (0.0014) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.004^{* * *} \\ (0.00128) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.010^{* * *} \\ & (0.00123) \\ & \hline \end{aligned}$	$\begin{gathered} -0.036^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.021^{* * *} \\ (0.0012) \\ \hline \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.026^{* * *} \\ (0.0007) \\ \hline \end{gathered}$	$\begin{gathered} -0.012^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0007) \\ \hline \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0007) \\ \hline \end{gathered}$
Maths	$\begin{gathered} 0.066^{* * *} \\ (0.0009) \\ \hline \end{gathered}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.0010) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.041^{* * *} \\ & (0.0010) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.00097) \\ & \hline \end{aligned}$	$\begin{gathered} -0.001 \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0014) \\ \hline \end{gathered}$	$\begin{gathered} -0.028^{* * *} \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} -0.014^{* * *} \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} -0.034^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0012) \\ \hline \end{gathered}$	$\begin{gathered} -0.0023^{* *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0.031^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0.010^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0.022^{* * *} \\ (0.0007) \\ \hline \end{gathered}$
$F-\text { test }$ difference	540.53***	205.07***	514.29***	$28.8{ }^{* * *}$	513.59***	203.86***	$2.16^{* * *}$	34.01***	514.29***	205.06***	$2.18^{* * *}$	$34.24 * *$	544.09***	204.57***	0.42	29.79***
Obs.	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (2) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at * $10 \%, * * 5 \%$ and $* * * 1 \%$

Table 7: Estimation diff-diff estimation - Male VS Female student 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
Male	0,056***	0,044***	0,031***	0,044***	0,000***	$-0,013^{* * *}$	$-0,024^{* * *}$	${ }^{-0,011 * * *}$	$-0,031^{* * *}$	$-0,019^{* * *}$	$-0,002^{* * *}$	$-0,016^{* * *}$	$-0,024^{* * *}$	$-0,013^{* * *}$	${ }_{-0,011 * * *}$	$-0,015^{* * *}$
Student	(0.0009)	(0.0009)	(0.0008)	(0.0006)	(0.0011)	(0.0002)	(0.0013)	(0.0012)	(0.0015)	(0.0017)	(0.0018)	(0.0002)	(0.0006)	(0.0005)	(0.0009)	(0.0004)
Female	0,048***	0,038***	0,024***	0,035***	0,018***	0,002***	-0,008***	0,005***	$-0,034^{* * *}$	$-0,022^{* * *}$	-0,005***	-0,018***	-0,032***	-0,018***	$-0,011^{* * *}$	$-0,02^{* * *}$
Student	(0.0007)	(0.0008)	(0.0007)	(0.0005)	(0.0004)	(0.0012)	(0.0009)	(0.0007)	(0.0002)	(0.0011)	(0.0001)	(0.0005)	(0.0012)	(0.0009)	(0.0005)	(0.0004)
$F-\text { test }$ difference	6,81***	4,37***	5,28***	6,66***	10,37***	7,38***	8,31***	9,95***	1,32	1,91	1,83	1,45	7,52***	4,39***	5,15***	6,88***
Obs.	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

 considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at ${ }^{*} 10 \%, * * 5 \%$ and ${ }^{* * *} 1 \%$

Table 8: Estimation diff-diff estimation - Male VS Female Teacher 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
Male Teacher	$0.058^{* * *}$ (0.0009)	$\begin{gathered} \hline 0.047^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.038^{* * *} \\ (0.0005) \end{gathered}$	$0.050^{* * *}$ (0.0007)	$0.003^{* * *}$ (0.0005)	$\begin{gathered} -0.013^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.001^{* * *} \\ (0.0005) \end{gathered}$	$-0.006^{* * *}$	$\begin{gathered} -0.033^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.007^{* * *} \\ (0.0012) \end{gathered}$	$-0.022^{* * *}$	$-0.029^{* * *}$	$\begin{gathered} -0.015^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.010^{* * *} \\ (0.0001) \end{gathered}$	$-0.022^{* * *}$	(0.0.
Female	$0.054^{* * *}$	$0.043^{* * *}$	$0.032^{* * *}$	$0.044^{* * *}$	$0.010^{* * *}$	$-0.005^{* * *}$	$0.008^{* * *}$	$0.001^{* * *}$	$-0.034^{* * *}$	$-0.011^{* * *}$	$-0.024^{* * *}$	$-0.029^{* * *}$	$-0.015^{* * *}$	$-0.010^{* * *}$	$-0.022^{* * *}$	
Teacher	(0.001)	(0.0005)	(0.0002)	(0.0003)	(0.0011)	(0.0008)	(0.0004)	(0.0013)	(0.0009)	(0.0008)	(0.0004)	(0.0015)	(0.0007)	(0.0002)	(0.0003)	(0.0011)
$F-t e s t$ difference	2.33	1.97	2.85*	2.89*	2.46	2.41	$3.34 * *$	2.90 ***	0.62	1.5	0.82	0.47	0.22	0.01	0.22	0.21
Obs.	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (2) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at * $10 \%, * * 5 \%$ and $* * * 1 \%$

Table 9: Estimation diff-diff estimation - Overlaping VS Non-overlaping teacher 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
No overlapping teacher	$\begin{gathered} \hline 0,032^{* * *} \\ (0.0006) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,024^{* * *} \\ (0.0007) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,005^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,010^{* * *} \\ (0.0002) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,003^{* * *} \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,022^{* * *} \\ (0.0006) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,004^{* * *} \\ (0.0005) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,015^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0,029^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0,021^{* * *} \\ (0.0007) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,004^{* * *} \\ (0.0005) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0,005^{* * *} \\ (0.0012) \\ \hline \end{gathered}$	$\begin{gathered} -0,037^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} -0,025^{* * *} \\ (0.0004) \\ \hline \end{gathered}$	$\begin{gathered} -0,013^{* * *} \\ (0.0005) \\ \hline \end{gathered}$	$\begin{gathered} -0,021^{* * *} \\ (0.0014) \\ \hline \end{gathered}$
Overlapping teacher	$\begin{gathered} \hline 0,059^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,049 * * * \\ (0.0009) \\ \hline \end{gathered}$	$\begin{gathered} 0,048^{* * *} \\ (0.0011) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,056^{* * *} \\ (0.0005) \\ \hline \end{gathered}$	$\begin{gathered} -0,002^{* * *} \\ (0.0012) \\ \hline \end{gathered}$	$\begin{gathered} -0,021^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0,021^{* * *} \\ (0.0006) \\ \hline \end{gathered}$	$\begin{gathered} -0,005^{* * *} \\ (0.0013) \\ \hline \end{gathered}$	$\begin{gathered} -0,034^{* * *} \\ (0.0015) \\ \hline \end{gathered}$	$\begin{gathered} -0,019^{* * *} \\ (0.0004) \\ \hline \end{gathered}$	$\begin{gathered} -0,017^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0,030^{* * *} \\ (0.0010) \\ \hline \end{gathered}$	$\begin{gathered} -0,023^{* * *} \\ (0.0010) \\ \hline \end{gathered}$	$\begin{gathered} -0,010^{* * *} \\ (0.0005) \\ \hline \end{gathered}$	$\begin{gathered} -0,009^{* * *} \\ (0.0008) \\ \hline \end{gathered}$	$\begin{gathered} -0,021^{* * *} \\ (0.0009) \\ \hline \end{gathered}$
$F-\text { test }$ difference	20,3***	18,49***	2,95*	11,45***	16,55***	19,69***	1,27	11,77***	29,68***	12,57***	12,46***	3,17***	33,65***	10,72***	15,72***	0,97
Obs.	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813	4,555,810	2,839,464	4,238,465	5,954,813
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (2) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at ${ }^{*} 10 \%, * * 5 \%$ and $* * * 1 \%$

7 Appendix

7.1 Appendix 1

Figure 4: Teacher score evolution in Portuguese and Mathematics 6th grade

The courses covered by national exams are in full line while the ones without external evaluation mechanisms are presented in dashed lines.Vertical lines frame the years during which high-stake exams were in place.

7.2 Appendix 2

Table 10: Estimation diff-diff estimation

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} \hline 0.042^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.042^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} \hline 0.048^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0^{* * *} \\ \left(0.046^{* * *}\right) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.009^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.007^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.021^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.016^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.021^{* * *} \\ (0.0005) \end{gathered}$
Obs.	7,100,725	4,486,612	7,174,747	9,788,860	7,100,725	4,486,612	7,174,747	9,788,860	7,100,725	4,486,612	7,174,747	9,788,860	7,100,725	4,486,612	7,174,747	9,788,860
R-squared	0.023	0.031	0.021	0.019	0.023	0.031	0.021	0.019	0.007	0.006	0.004	0.006	0.005	0.007	0.006	0.006
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%$ and ${ }^{* * *} 1 \%$

Table 11: Estimation diff-diff estimation - Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} \hline 0.045^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} \hline 0.046^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} \hline 0.055^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} \hline 0.051^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.008^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.023^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.023^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.024^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.024^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.023^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} -0.020^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.023^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} -0.024^{* * *} \\ (0.0006) \end{gathered}$
Obs.	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453
R-squared	0.021	0.028	0.019	0.017	0.005	0.005	0.004	0.005	0.005	0.005	0.003	0.005	0.006	0.008	0.006	0.006
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 12: Estimation diff-diff estimation - Student Fixed effect

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} 0.0356^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.040^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.043^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0.041^{* * *} \\ (0.0006) \end{gathered}$	$\begin{gathered} 0^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.009^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.004^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.016^{* * *} \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.016^{* * *} \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0004) \end{gathered}$
Obs.	5591273	3635662	5745473	7701084	5591273	3635662	5745473	7701084	5591273	3635662	5745473	7701084	5591273	3635662	5745473	7701084
R-squared	0,45	0,49	0,43	0,4	0,44	0,48	0,41	0,39	0,43	0,48	0,41	0,39	0,62	0,66	0,59	0,58
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	NO															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at $* 10 \%, * * 5 \%$ and ${ }^{* * *} 1 \%$

7.3 Appendix 3

Table 13: Estimation diff-diff estimation - Placebo 1- Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} 0.003^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.009^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.011^{* * *} \\ (0.0008) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.0007) \end{gathered}$	$\begin{gathered} -0.013^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.012^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.003^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} 0.006^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.011^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} 0.002^{*} \\ (0.0009) \end{gathered}$	$\begin{aligned} & 0.002^{* *} \\ & (0.0008) \end{aligned}$	$\begin{gathered} 0.005^{* * *} \\ (0.0006) \end{gathered}$	$\begin{aligned} & 0.010^{* * *} \\ & (0.0007) \end{aligned}$	$\begin{aligned} & 0.006^{* * *} \\ & (0.0006) \end{aligned}$	$\begin{aligned} & 0.005^{* * *} \\ & (0.0006) \end{aligned}$
Obs.	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453	5,198,496	3,281,792	5,205,749	7,122,453
R-squared	0.021	0.028	0.019	0.017	0.005	0.005	0.004	0.005	0.005	0.005	0.003	0.005	0.006	0.008	0.006	0.006
Covariates	NO	$\sim^{\sim} \mathrm{NO}$	NO													
Year FE	YES	$\downarrow \mathrm{YES}$	YES													
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation () on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%$ and ${ }^{* * *} 1 \%$

Table 14: Estimation diff-diff estimation - Placebo 1

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} -0.000 \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.019^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.026^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.013^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.0013 \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.008^{* * *} \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.0178^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.0125^{* * *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & 0.00129 \\ & (0.0008) \end{aligned}$	$\begin{gathered} 0.0120^{* * *} \\ (0.0015) \end{gathered}$	$\begin{gathered} 0.0180^{* * *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & 0.008^{* * *} \\ & (0.0012) \end{aligned}$	$\begin{gathered} -0.000 \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.0010) \end{gathered}$	$\begin{gathered} 0.021^{* * *} \\ (0.0009) \end{gathered}$	$\begin{gathered} 0.013^{* * *} \\ (0.0008) \end{gathered}$
Obs.	5,590,847	2,965,700	5,852,539	8,477,756	5,468,582	2,882,709	5,362,444	7,948,385	5,468,582	2,882,709	5,362,444	7,948,385	5,468,582	2,882,709	5,362,444	7,948,385
R-squared	0.178	0.169	0.178	0.180	0.174	0.172	0.142	0.149	0.174	0.107	0.113	0.113	0.174	0.292	0.265	0.272
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 15: Estimation diff-diff estimation - Placebo 2 - Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} -0.0011 \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.0063^{* * *} \\ (0.0013) \end{gathered}$	$\begin{gathered} -0.0061^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.0029^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.0016) \end{gathered}$	$\begin{aligned} & \hline 0.0033^{*} \\ & (0.0018) \end{aligned}$	$\begin{gathered} 0.007^{* * *} \\ (0.0016) \end{gathered}$	$\begin{aligned} & \hline 0.004^{* *} \\ & (0.0015) \end{aligned}$	$\begin{aligned} & \hline-0.0013 \\ & (0.0014) \end{aligned}$	$\begin{aligned} & \hline-0.0004 \\ & (0.0016) \end{aligned}$	$\begin{gathered} -0.0032^{* *} \\ (0.0013) \end{gathered}$	$\begin{gathered} -0.0027^{* *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & \hline 0.0024^{* *} \\ & (0.00101) \end{aligned}$	$\begin{gathered} 0.0034^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} \hline 0.0019^{* *} \\ (0.0009) \end{gathered}$	$\begin{aligned} & \hline 0.0019^{* *} \\ & (0.0009) \end{aligned}$
Obs.	5,037,127	2,541,755	5,030,657	7,526,029	5,037,127	2,541,755	5,030,657	7,526,029	5,037,127	2,541,755	5,030,657	7,526,029	5,037,127	2,541,755	5,030,657	7,526,029
R-squared	0.001	0.003	0.007	0.006	0.002	0.001	0.001	0.002	0.002	0.002	0.003	0.004	0.001	0.002	0.005	0.004
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds -1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at $* 10 \%, * * 5 \%$ and ${ }^{* * *} 1 \%$

Table 16: Estimation diff-diff estimation - Placebo 2

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} -0.005^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.009^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.003^{* *} \\ (0.0013) \end{gathered}$	$\begin{gathered} -0.003^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0012) \end{gathered}$	$\begin{aligned} & 0.005^{* *} \\ & (0.0021) \end{aligned}$	$\begin{gathered} 0.002 \\ (0.0019) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.0017) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0019) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0017) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.0015) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.005^{* * *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & 0.007^{* * *} \\ & (0.0012) \end{aligned}$	$\begin{gathered} -0.004^{* * *} \\ (0.0010) \end{gathered}$
Obs.	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409
R-squared	0.172	0.165	0.171	0.173	0.172	0.165	0.139	0.146	0.172	0.102	0.108	0.107	0.172	0.289	0.264	0.272
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 17: Estimation diff-diff estimation - Placebo 3 - Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} \hline 0.005^{* * *} \\ (0.0011) \end{gathered}$	$\begin{aligned} & \hline 0.003^{* *} \\ & (0.0013) \end{aligned}$	$\begin{gathered} \hline 0.008^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.007^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0016) \end{gathered}$	$\begin{aligned} & \hline-0.003^{*} \\ & (0.0018) \end{aligned}$	$\begin{gathered} -0.006^{* * *} \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.004^{* *} \\ (0.0015) \end{gathered}$	$\begin{gathered} -0.003^{* *} \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.0016) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.0013) \end{gathered}$	$\begin{aligned} & -0.002^{*} \\ & (0.0013) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.002^{* *} \\ (0.0010) \end{gathered}$	$\begin{aligned} & \hline-0.001 \\ & (0.000) \end{aligned}$
Obs. R-squared	$\begin{gathered} \hline 5,037,127 \\ 0.001 \end{gathered}$	$\begin{gathered} \hline 2,541,755 \\ 0.003 \end{gathered}$	$\begin{gathered} \hline 5,030,657 \\ 0.007 \end{gathered}$	7,526,029 0.006	$\begin{gathered} \hline 5,037,127 \\ 0.002 \end{gathered}$	$\begin{gathered} \hline 2,541,755 \\ 0.001 \end{gathered}$	$\begin{gathered} \hline 5,030,657 \\ 0.001 \end{gathered}$	$\begin{gathered} \hline 7,526,029 \\ 0.002 \end{gathered}$	$\begin{gathered} \hline 5,037,127 \\ 0.002 \end{gathered}$	$\begin{gathered} \hline 2,541,755 \\ 0.002 \end{gathered}$	$\begin{gathered} \hline 5,030,657 \\ 0.003 \end{gathered}$	$\begin{gathered} \hline 7,526,029 \\ 0.004 \end{gathered}$	$\begin{gathered} \hline 5,037,127 \\ 0.001 \end{gathered}$	$\begin{gathered} \hline 2,541,755 \\ 0.002 \end{gathered}$	$\begin{gathered} 5,030,657 \\ 0.005 \end{gathered}$	$\begin{gathered} 7,526,029 \\ 0.004 \end{gathered}$
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at $* 10 \%, * * 5 \%$ and $* * * 1 \%$

Table 18: Estimation diff-diff estimation - Placebo 3

	Score <3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} \hline 0.011^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} \hline 0.008^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.011^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.013^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.004^{*} \\ (0.0021) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.0019) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.0018) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0020) \end{gathered}$	$\begin{gathered} 0.001^{* * *} \\ (0.0018) \end{gathered}$	$\begin{gathered} 0.013^{* * *} \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.004^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0011) \end{gathered}$
Obs.	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409
R-squared	0.172	0.165	0.171	0.173	0.172	0.165	0.139	0.146	0.172	0.102	0.108	0.107	0.172	0.289	0.264	0.272
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds -1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 19: Estimation diff-diff estimation - Placebo 4 - Restricted for the period 2007-2015

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} -0.004^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} \hline 0.004^{* * *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & -0.002^{*} \\ & (0.0012) \end{aligned}$	$\begin{gathered} -0.004^{* * *} \\ (0.0011) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.0018) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0016) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.0015) \end{gathered}$	$\begin{gathered} 0.004^{* * *} \\ (0.0013) \end{gathered}$	$\begin{aligned} & -0.0013 \\ & (0.0015) \end{aligned}$	$\begin{aligned} & 0.003^{* *} \\ & (0.0013) \end{aligned}$	$\begin{gathered} 0.005^{* * *} \\ (0.001300) \end{gathered}$	$\begin{gathered} -0.002^{* *} \\ (0.0010) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.0009) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.0009) \end{gathered}$
Obs.	5,136,246	2,581,522	5,117,713	7,672,437	5,136,246	2,581,522	5,117,713	7,672,437	5,136,246	2,581,522	5,117,713	7,672,437	5,136,246	2,581,522	5,117,713	7,672,437
R-squared	0.001	0.002	0.007	0.006	0.002	0.001	0.001	0.002	0.002	0.001	0.003	0.004	0.001	0.002	0.005	0.004
Covariates	NO															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	NO															
Teacher FE	YNO	NO														

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at *10\%, **5\% and *** 1%

Table 20: Estimation diff-diff estimation - Placebo 4

	Score < 3				Score $=3$				Score $=4$				Score $=5$			
	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)	(5th)	(6th)	(7th)	(all)
β_{3}	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.007^{* * *} \\ (0.0013) \end{gathered}$	$\begin{gathered} -0.009^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} 0.004^{*} \\ (0.0021) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.0019) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.0018) \end{gathered}$	$\begin{gathered} -0.006^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.0019) \end{gathered}$	$\begin{gathered} \hline 0.010^{* * *} \\ (0.0018) \end{gathered}$	$\begin{gathered} \hline 0.013^{* * *} \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.0056^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.0043^{* * *} \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.0059^{* * *} \\ (0.0012) \end{gathered}$	$\begin{gathered} -0.0055^{* * *} \\ (0.0011) \end{gathered}$
Obs.	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409	4,338,611	2,144,747	3,834,546	6,028,409
R-squared	0.172	0.165	0.171	0.173	0.172	0.165	0.139	0.146	0.172	0.102	0.108	0.107	0.172	0.289	0.264	0.272
Covariates	YES															
Year FE	YES															
Course FE	YES															
Grade FE	YES															
School FE	YES															
Teacher FE	YES															

The table shows the the average impact on Portuguese and mathematics teacher scores in the years that high stake exams are in place. It is reported the Linear probability models in equation (1) on the different score thresholds - 1 and 2 (non-passing score), 3 (passing score), 4 (good score) and 5 (very good score). Each column corresponds to an estimation considering a different control group, namely the teachers scores in other courses not covered by high-stake exams - English, History and Sciences.
Statistically significant at ${ }^{*} 10 \%, * * 5 \%$ and ${ }^{* * *} 1 \%$

Bibliography

Ghazala Azmat and Nagore Iriberri. The Provision of Relative Performance Feedback: An Analysis of Performance and Satisfaction. Journal of Economics and Management Strategy, 25(1), 2016. ISSN 15309134. doi: 10.1111/jems. 12151.

Annika B. Bergbauer, Eric A. Hanushek, and Ludger Woessmann. Testing. NBER Working Paper No. 24836. National Bureau of Economic Research, 2018.

Matteo Bobba and Veronica Frisancho. Learning About Oneself: The Effects of Signaling Ability on School Choice. Working Paper, (October), 2016.

Fernando Botelho, Ricardo A. Madeira, and Marcos A. Rangel. Racial Discrimination in Grading: Evidence from Brazil. American Economic Journal: Applied Economics, 7(4), 2015. ISSN 19457790. doi: 10.1257/app. 20140352.

Simon Burgess and Ellen Greaves. Test scores, subjective assessment, and stereotyping of ethnic minorities. Journal of Labor Economics, 31(3):535-576, 2013. ISSN 0734306X. doi: 10.1086/669340.

Simon Burgess, Deborah Wilson, and Jack Worth. A natural experiment in school accountability: The impact of school performance information on pupil progress. Journal of Public Economics, 106, 2013. ISSN 00472727. doi: 10.1016/j.jpubeco.2013.06.005.

Caterina Calsamiglia and Annalisa Loviglio. Grading on a curve: When having good peers is not good. Economics of Education Review, 73, 2019. ISSN 02727757. doi: 10.1016/j.econedurev.2019.101916.

José Miguel Cerdeira, Luis Catela Nunes, Ana Balcão Reis, and Carmo Seabra. Predictors of student success in Higher Education: Secondary school internal scores versus national exams. Higher Education Quarterly, 72(4):304-313, 2018. ISSN 14682273. doi: 10.1111/hequ. 12158.

Christopher Cornwell, David B. Mustard, and Jessica Van Parys. Noncognitive skills and the gender disparities in test scores and teacher assessments: Evidence from primary school. Journal of Human Resources, 48(1):236-264, 2013. ISSN 0022166X. doi: 10.3368/jhr.48.1.236.

Rebecca Diamond and Petra Persson. The Long-term Consequences of Teacher Discretion in Grading of High-stakes Tests. National Bureau of Economic Research Working Paper Series, No. 22207, 2016. doi: 10.3386/w22207. URL http://www.nber.org/ papers/w22207.

David Figlio and Susanna Loeb. Chapter 8 School Accountability. In Handbook of the Economics of Education, volume 3. 2011.

Brian A. Jacob and Lars Lefgren. Remedial education and student achievement: A regression-discontinuity analysis. Review of Economics and Statistics, 86(1):226-244, 2004. ISSN 00346535. doi: 10.1162/003465304323023778.

Daniel Koretz. The Testing Charade. 2019. doi: 10.7208/chicago/9780226408859.001. 0001.

Victor Lavy. Do gender stereotypes reduce girls' or boys' human capital outcomes? Evidence from a natural experiment. Journal of Public Economics, 92(10-11):20832105, 2008. ISSN 00472727. doi: 10.1016/j.jpubeco.2008.02.009.

Victor Lavy and Edith Sand. On the origins of gender gaps in human capital: Shortand long-term consequences of teachers' biases. Journal of Public Economics, 2018. ISSN 00472727. doi: 10.1016/j.jpubeco.2018.09.007.

Luis C. Nunes, Ana Balcão Reis, and Carmo Seabra. The publication of school rankings: A step toward increased accountability? Economics of Education Review, 49:15-23, 2015. ISSN 02727757. doi: 10.1016/j.econedurev.2015.07.008.

Sheetal Sekhri. Prestige matters: Wage premium and value addition in elite colleges. American Economic Journal: Applied Economics, 12(3), 2020. ISSN 19457790. doi: 10.1257/app. 20140105.

Steven L. Wise and Christine E. DeMars. Examinee noneffort and the validity of program assessment results. Educational Assessment, 15(1), 2010. ISSN 10627197. doi: 10. 1080/10627191003673216.

Gema Zamarro, Collin Hitt, and Ildefonso Mendez. When Students Don't Care: Reexamining International Differences in Achievement and Non-Cognitive Skills. SSRN Electronic Journal, 2018. ISSN 1932-8575. doi: 10.2139/ssrn. 2857243.

[^0]: *This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209),POR Lisboa (LISBOA010145FEDER007722) and Social Sciences DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209). Preliminary and incomplete, please do not cite.
 ${ }^{\dagger}$ Corresponding author: pedro.freitas@novasbe.pt

[^1]: ${ }^{1}$ These results were already published for the 9 th an 12 th exams, being then extended to the 6 th grade exams.
 ${ }^{2} 1$ and 2 correspond to score below a 50% level, 3 is comprehended between 51% and $69 \%, 4$ between 70% and 89% and 5 is granted for performances above 90%.
 ${ }^{3}$ In Appendix 1 Figure 4 we plot the evolution of the share of students in each score across time.

[^2]: ${ }^{4}$ Considering two different levels, A and B , targeting students with different socio.economic and family conditions.
 ${ }^{5}$ Taken as dummies standing for the score levels between 1 and 5.
 ${ }^{6}$ We are able to identify these large set of fixed fixed effects, given the large amount of teachers in different courses moving across different schools, allowing us to estimate separately school and teacher fixed effects.

[^3]: ${ }^{7}$ In Table 10, in Appendix 2 are showed the results of the same specification without sociodemographic controls and the different fixed effect levels included.

[^4]: ${ }^{8}$ In Table 11, in appendix 2 are showed the results of the same specification without sociodemographic controls and the different fixed effect levels included.

